Preparation and Characterization of Some Crystalline Condensed Cerium–Ammonium Phosphates

M. RZAIGUI AND N. K. ARIGUIB

Laboratoire de Physico-Chemie Minérale, Ecole Normale Supérieure, 43 Rue de la liberté le Bardo, Tunis, Tunisia

Received November 8, 1982, and in revised form May 4, 1983

The present paper is a part of our systematic investigation of $M_2^IO-Ce_2O_3-P_2O_5$ systems (1, 2), undertaken because the properties of Ce^{3+} compounds are of interest in the field of ultrafast luminophors (3). We describe chemical preparations and give the main crystallographic features for three forms of $(NH_4)_2O \cdot Ce_2O_3 \cdot 4P_2O_5$ and for $(NH_4)_2Ce(PO_3)_5$, a new structural type of long chain polyphosphate.

Experimental

Starting materials in each case were reagent grade diammonium hydrogen monophosphate, $(NH_4)_2HPO_4$, and cerium chloride heptahydrate, $CeCl_3 \cdot 7H_2O$. Mixtures of these two salts were heated in open carbon crucibles. Thermal treatments were made in two steps. First the temperature was increased to 433 K at a rate of 3°/min and kept constant for 3 hr. Subsequently, the temperature was increased to 573-623 K with the same heating rate. Table I reports details of these preparations. The existence of the $(NH_4)_2Ce(PO_3)_5$ compound has been observed earlier (4).

X-Ray diffraction powder diagrams were recorded at low scan speed ((1°/8) θ /min) using a Philips Norelco diffractometer operating with copper radiation $K\alpha$. Space groups have been determined by the Weissenberg

TABLE I TYPICAL MIXING QUANTITIES OF RAW MATERIALS FOR SINGLE CRYSTAL GROWTH OF BINARY CERIUM-AMMONIUM POLY- AND METAPHOSPHATES

Product	(NH4)2HPO4 (g)	CeCl ₃ · 7H ₂ O (g)	Temperature and time of crystallization	Crystal morphology	
NH ₄ Ce(PO ₃) ₄	13.2	0.7	623 K; 10 hr	Square monoclinic antiprisms	
NH ₄ CeP ₄ O ₁₂ (cubic)	13.2	1.9	603 K; 14 hr	Tetrahedra	
NH ₄ CeP ₄ O ₁₂ (monoclinic)	2.4	0.8	573 K; 18 hr	Needle-shaped	
$(NH_4)_2Ce(PO_3)_5$	5.4	1	593 K; 20 hr	Diamond-like	

FIG. 1a. Crystal morphology of NH₄Ce(PO₃)₄.

FIG. 1b. Crystal morphology of NH₄CeP₄O₁₂ (cubic).

FIG. 1c. Crystal morphology of NH₄CeP₄O₁₂ (monoclinic).

FIG. 1d. Crystal morphology of (NH₄)₂Ce(PO₃)₅.

Compound	System	Space group	Unit cell parameter					
			a(Å) α(°)	b(Å) β(°)	c(Å) γ(°)	Z	V (ų)	Density, D _x (g/cm ³)
NH₄Ce(PO ₃)₄	Monoclinic	P2 ₁ /n	10.474(6)	9.011(4) 106.64(3)°	10.947(7)	4	989.86	3.18
NH₄CeP₄O ₁₂	Cubic	I43d	15.164(3)			12	3487.19	2.71
NH₄CeP₄O ₁₂	Monoclinic	C2/c	7.930(3)	12.634(5) 110.05(3)°	10.699(5)	4	1006.94	3.13
(NH ₄) ₂ Ce(PO ₃) ₅	Triclinic	<i>P</i> 1	7.254(2) 90.07(2)°	13.372(3) 107.3(1)°	7.277(2) 90.42(2)°	2	673.06	2.85

TABLE II

technique. Unit cell parameters have been refined by a least squares method using the powder data.

Infrared spectra were recorded on an IR-580 Perkin-Elmer spectrophotometer using pellets formed by mixing the specimens with KBr.

Results and Discussion

Under the experimental conditions described in Table I, four different binary cerium-ammonium poly- and metaphosphates have been prepared (Fig. 1). Their crystallographic characteristics are summarized in Table II. Indexed X-ray diffraction patterns are reported in Tables III-VI. Each crystalline form presents typical structural features:

 $NH_4Ce(PO_3)_4$, square monoclinic prisms, is a long chain polyphosphate isotypic with RbNd(PO₃)₄ (5). Two infinite (PO₃) chains, with a period of eight tetrahedra run along the [101] direction. Cerium atoms have an eightfold coordination while NH₄ groups have nine oxygen neighbors. The main crystallographic features of this salt are reported in Table II.

 $NH_4CeP_4O_{12}$ (cubic), tetrahedral crystals, is a binary metaphosphate isotypic with CsNdP₄O₁₂ (6). $(P_4O_{12})^{-4}$ anions are rings of four PO₄ tetrahedra, linked by shared oxygen atoms. Cerium atoms have an eightfold coordination while NH4 groups have nine oxygen neighbors. The parame-

FIG. 2. Infrared absorption spectra of (a) $NH_4CeP_4O_{12}$ (cubic); (b) $NH_4CeP_4O_{12}$ (monoclinic); (c) $NH_4Ce(PO_3)_4$; (d) $(NH_4)_2Ce(PO_3)_5$.

TABLE III X-Ray Powder Data for NH4Ce(PO3)4

h k l	d _{çal} (Å)	d _{obs} (Å)	1 (%)	h k l	d _{çal} (Å)	d _{qbs} (Å)	1 (%)
 ī 0 1	8.58	8.56	47	301	3.489	3.491	24
011	6.84	6.84	71	221	3.387	3.387	82
101	6.39	6.39	47	$\bar{2}$ 1 3	3.144	3.145	24
111	6.21	6.22	92	310	3.136	3.135	35
111	5.21	5.22	100	103	3.042	3.043	18
200	5.02	5.02	15	303	2.861	2.860	41
$\overline{1}12$ 012	4.58 4.53	4.58 4.53	18 17	$\frac{0}{3} \frac{2}{2} \frac{3}{2}$	2.762	2.759	18
$\frac{1}{2}$ 0 2 1 0 3	4.29 3.642	4.29 3.640	76 27	$\overline{1}$ $\overline{0}$ $\overline{5}$ $\overline{1}$ $\overline{4}$ 1	2.182 2.179	2.178	19

ters of its cubic unit cell are given in Table II.

 $NH_4CeP_4O_{12}$ (monoclinic), needleshaped crystals, is a binary metaphosphate isostructural with $NH_4PrP_4O_{12}$ (7). Its monoclinic unit cell contains P_4O_{12} rings. The cyclic anions provide eight and six oxygen atoms about Ce³⁺ and NH_4^+ , respectively.

 $(NH_4)_2Ce(PO_3)_5$, diamond-like crystals, is another type of long chain polyphosphate with a P1 triclinic unit cell. The most interesting crystallographic feature of this salt is the existence of two independent infinite $(PO_3)_n$ chains in the unit cell; one running

TABLE IV X-Ray Powder Data for NH₄CeP₄O₁₂ (Cubic)

h k l	d _{çal} (Å)	d _{qbs} (Å)	1 (%)	h k l	d _{çal} (Å)	d _{obs} (Å)	 (%)
2 1 1	6.19	6.20	100	431	2.974	2.978	67
220	5.36	5.37	23	521	2.769	2.770	23
310	4.80	4.80	17	532) 611)	2.460	2.464	17
321	4.05	4.05	40	622 552	2.286	2.288	13
400	3.791	3.792	27	633 721	2.064	2.067	10
420	3.391	3.394	17	642	2.026	2.029	30
332	3.233	3.241	30	730	1.991	1.993	10
422	3.095	3.100	15				

TABLE V X-RAY POWDER DATA FOR NH4CeP4O12

(Monoclinic)								
hki	d _{çal} (Å)	d _{qbs} (Å)	1 (%)	hkl	d _{çal} (Å)	d _{obs} (Å)	1 (%)	
110	6.42	6.42	19	<u>0</u> 42	2.674	2.675	6	
020	6.32	6.32	58	114	2.617	2.616	6	
021	5.35	5.35	71	310	2.436	2.437	6	
<u>1</u> 11	4.80	4.80	26	240	2.409	2.409	23	
112	4.69	4.69	35	<u>1</u> 50	2.393	2 302	6	
200	3.725	3.723	14	<u>3</u> 13	2.390∫	2.372		
130	3.666	3.663	32	224	2.342	2.344	9	
112	3.488	3.488	100	133	2.288	2.289	6	
ī13	3.412	3.412	6	241	2.233)	• • • •		
221	3.357	3.356	9	331	2.231	2.233	0	
131	3.271	3.271	19	333	2.107			
132	3.233	3.234	65	060	2,106	2.108	0	
220	3.208	3.207	9	061	2.061			
222	3 (60)			153	2 057	2.060	13	
040	3 157	3.158	19	223	2 036	2 033	13	
221	2 824	2.824	8	223	2.000	2.055	••	
		2.021	Ũ					

along the **a** axis, the other along the **c** axis. Both have a period of five tetrahedra. This is the first long chain polyphosphate to exhibit such a feature. We detail this structure elsewhere (8).

TABLE VI X-Ray Powder Data for (NH4)2Ce(PO3)5

hkl	d _{çal} (Å)	d _{qbs} (Å)	I (%)	hkl	d _{çal} (Å)	d _{obs} (Å)	1 (%)
001	6.94	6.94	50	112	2.728	2.729	21
020	6.69	6.69	13	$1\frac{1}{4}$	2.647	2.647	5
011	6.17	6.17	89	151	2.430)		
ĪOI	5.86	5.86	8	241	2.427	2.429	11
111	5.36	5.36	32	321	2.278Ĵ		
021	4.80	4 70		013	2.277	2.276	13
120	4.79	4.79	60	310	2.275		
121	4.41	4.40		213	2.231	2 220	٥
121	4.40	4.40	ð	312	2.230	2.230	0
111	4.08	4.08	5	023	2.188		
130	3.733	3.732	24	320	2.185	2.186	5
121	3.602	3.061	18	023	2.184		
201	3.552	3.550	26	ī 5 <u>2</u>	2.139)		
112	3.441)	2 440	74	152	2.138	2.139	13
112	3.440)	5.440	74	322	2.137		
012	3.361	3.361	100	160	2.116	2 114	16
210	3.342	3.341	84	052	2.114	2.114	10
122	3.143)	2 1 4 2	0	161	2.080	2.078	5
122	3.142	3.145	0	222	2.049)	2.045	2
022	3.084	2 092	5	330	2.041)	2.045	0
220	3.082)	5.065	5	311	1.994}	1 002	8
041	3.016	3.016	24	31 <u>1</u>	1.989∫	1.772	0
140	3.001	3.000	18	323	1.873	1.874	5
202	2.930	2.931	11	171	1.814	1.814	16

The ir absorption spectra (Fig. 2) are characteristic of cyclic phosphates and linear polyphosphates (9), respectively.

We used these compounds and other binary condensed phosphates of the same type to investigate the Ce^{3+} luminescence in such materials. The results will be published in subsequent contributions.

References

- 1. M. RZAIGUI AND N. K. ARIGUIB, J. Solid State Chem. 39, 309 (1981).
- 2. M. RZAIGUI, M. DABBABI, AND N. K. ARIGUIB, J. Chim. Phys. 6, 78, 563 (1981).
- 3. A. BRIL, G. BLASSE, A. H. GOMES DE MESQUITA,

AND J. A. DE PORTER, *Philips Tech. Rev.* 32, 125 (1971).

- M. A. VAIVADA AND Z. A. KONSTANT, Z. Kristallogr. 15, 824 (1979).
- 5. S. I. MAKSIMOVA, K. K. PALKINA, V. B. LOSH-CHENOV, AND V. G. KUZNETSOV Zh. Neorg. Khim. 23, 2959 (1978).
- K. K. PALKINA, S. I. MAKSIMOVA, AND N.T. CHI-BISCOVA, Dokl. Akad. Nauk SSSR 257, 2, 357 (1981).
- 7. R. MASSE, J. C. GUITEL, AND A. DURIF, Acta Crystallogr. B 33, 630 (1977).
- 8. M. RZAIGUI, N. K. ARIGUIB, M. T. AVERBUCH-POUCHOT, AND A. DURIF, to be published.
- V. A. MADII, YU. I. KRASILOV, V. A. KIZEL, YU. V. DENISOV, N. N. CHUDINOVA, AND N. V. VINO-GRADOVA, Izv. Akad. Nauk SSSR Ser. Neorg. Mater. 14, 2061 (1978).